ENVIRONMENTAL COMPLIANCE AND ENVIRONMENT PROTECTION
Company profile

The Caspian Pipeline Consortium was established to transport crude oil from the fields in western Kazakhstan and Russia including those in the Caspian Sea. More than 1.5 thou. km long oil pipeline connects the oil fields in Western Kazakhstan and the Marine Terminal in Yuzhnaya Ozereevka village near Novorossiysk wherefrom the oil loaded into tankers leaves to the world markets. Joint Stock Company CPC-R is registered in the Russian Federation and Joint Stock Company CPC-K – in the Republic of Kazakhstan.
Company environmental policy

Environment protection is one of the CPC priorities in their business processes. CPC introduced the Health, Safety and Environment Policy carefully followed by all company departments and operation regions including the engaged contractors.

For environmental compliance the company established an environment protection department. In each region there are expert environmental engineers undergoing refresher training and certification on a regular basis. The overall management and coordination of the environment protection activities are provided from the company Moscow office.

Health, Safety and Environment Protection
POLICY STATEMENT
for JSC “Caspian Pipeline Consortium – R”

It is the Policy Statement of Caspian Pipeline Consortium - R ("CPC-R", the “Company") to protect the safety and health of people and the environment, and to conduct our oil transportation activity reliably and efficiently. CPC-R requires the active commitment to and accountability for Health, Safety, and Environment (HSE) from all employees and contractors. Line management has a leadership role in the communication and implementation of, and ensuring compliance with HSE requirements, procedures and instructions.

CPC-R places the highest priority on the health and safety of the Company workforce and contractors, as well as population living in the areas near the operated facilities, protection of the environment and our assets. As such CPC-R HSE Management System has the following strategic objectives:

- Achieving an incident-, injury and illness - free operation, prevention of emergencies at CPC-R facilities;
- Prevention of pollution and maximum reduction of wastes to limit impacts from our operations and continually improve environmental performance;
- Reliable operation focusing on the safety and integrity of our assets.

In order to achieve these strategic goals we will:

- Identify, assess, and mitigate HSE and operational risks;
- Comply with the requirements of HSE legislation of the Russian Federation; effective international standards and practices; and the procedures and instructions established internally within CPC-R;
- Operate with excellence, embracing operational discipline ensuring all tasks are always completed according to procedures;
- Ensure high HSE competence among all Company employees and contractors;
- Inform and consult employees and contractors about Company activities of ensuring industrial safety, process risks, HSE risks, and risks of incidents at all CPC-R facilities, assisting in initiatives and encouraging good HSE behavior;
- Foster an HSE culture where employees take responsibility for their own safety as well as watching out for those around them, including stopping any work deemed unsafe, as well as for systematic identification and prevention of circumstances which might be a cause of a threat to health and safety;
- Commit to continuous HSE Management System improvement.

CPC-R Management commits to improve the efficiency of the HSE Management System by its regular analysis, decisions making and allocation of proper resources and is personally liable for compliance with the Policy at all Company levels.

General Director

Operations Department

[Signatures with dates]
Environmental management standards

The safety and health legislation changes are monitored on a quarterly basis and the consortium operations compliance with the established requirements is verified.

Since 2010 CPC health and safety management system covering all types of operational activities in all company divisions in Kazakhstan and Russia is certified to BS OHSAS 18001:2007.

In July 2018 the latest external verification audit was successfully performed by Bureau Veritas certification body.
Environmental management standards

Each CPC employee has access to EMS documents downloaded to the company intranet and posted on information stands in each office, at each pump station (PS) and at the Marine Terminal (MT) facilities.
CPC pipeline system environmental compliance

- Industrial environmental control and monitoring
- Leak detection
- Safe tanker loading technology
- Advanced design extra-strong tanks with low emission system
- Oil spill and emergency response system
- Environment friendly construction of underwater crossings
- Cathodic protection, inline and external inspection
- Efficient wastewater treatment technology
CPC industrial environmental control and monitoring objects

- **ENVIROMENTAL MONITORING DURING CONSTRUCTION**
 - Man-induced impact sources
 - Environment conditions and quality
 - Emissions
 - Waste
 - Ambient air
 - Water bodies
 - Vegetation and topsoil
 - Geo-environment
 - Marine environment
 - Biota
 - Marine biota

- **INDUSTRIAL ENVIRONMENTAL CONTROL DURING OPERATIONS**
 - Impact sources control
 - Environm ental control
 - Treatment facilities performance control
 - Noise
 - Domestic water
 - Ambient air
 - Surface waters
 - Ground waters
 - Sea waters
 - Bottom sediments

DATABASES CREATION
- Findings analysis and action plan development

Ambient air
- Water bodies
- Vegetation and topsoil
- Geo-environment
- Marine environment
- Biota
- Marine biota

Waste
- Waste waters

Emissions
- Ambient air

Waste waters
- Surface waters
- Ground waters
- Sea waters
- Bottom sediments

Noise
- Domestic water

Health-based exposure limits compliance control
Reports development on the monitoring findings for each facility
Reports development on the monitoring findings for each facility
Use of advanced technologies

SINGLE POINT MOORINGS (SPM)

CPC uses the safest and the most reliable tanker loading technology – SPM including a floating buoy and a pipeline end manifold that is tied-in to onshore crude oil metering stations via an offshore pipeline.

SPM is the most reliable technical solution from the environment protection perspective vs. onshore terminals as it involves much less dredging works vs. the option with a terminal essentially eliminating the impact on flora and fauna of the water area and sea bed. The tanker moored to SPM can move freely around the mooring point, approach to leeward to reduce impacts of winds, currents and waves significantly mitigating the risk of a mechanical failure during oil loading and of loading hoses leakage.

1 — anchor chains; 2 — pipeline end manifold; 3 — buoy; 4 — swivel; 5 — mooring cable; 6 — tanker; 7 — floating hoses; 8 — underwater hoses; 9 — offshore pipeline
Use of advanced technologies

TANK FARM (TF)

Advanced technologies were applied for the tank farm construction. For instance, the tank walls are made of corrosion resistant extra-strong steel sheets.

In addition the tanks are equipped with floating roofs having high density rigid secondary seals preventing the crude vapour loss to the environment. All drains are discharged via closed drain systems to high-tech treatment facilities.
Use of advanced technologies

The area around tanks is covered with high-density membrane that will prevent the crude oil entering soil.

The tanks are installed on a multi-layer compacted sand and gravel bed reinforced by durable protective material.
Use of advanced technologies

AUTOMATIC CONTROL AND DATA COLLECTION SYSTEM (SCADA)

CPC has a fiber optic automatic control and data collection system, SCADA, in place having no equals anywhere in Russia.

Its primary function is online control and monitoring of the oil pumping, safe operation and control of all CPC facilities. The system records all parameters of the pipeline condition in real time mode.

One of the critical subsystems is the oil leak detection system (LDS). It promptly performs the task of leak detection at any pipeline segment ensuring fast response of CPC emergency services.
Use of advanced technologies

INLINE INSPECTION

The main pipeline inline inspection activities are of continuous and integrated nature. The systematic inspection of Tengiz – Novorossiysk mainline technical condition is one of the consortium’s top priorities ensuring high industrial and environmental safety standard, mitigating the risk of emergency situations.

The inspection is performed using three types of inspection pigs to run in the pipeline. A diagnostic tool is used – multichannel caliper pig that detects pipeline out-of-roundness features (dents, wrinkles, ovality) and bend radii. High resolution magnetic flow detectors are used to locate and size the pipeline transverse defects. Ultrasonic flaw detectors inspect the corrosion, lamination, scratch mark types of defects.

Following such activities technical reports and industrial safety expert review conclusions are developed. The defects identified in process of inspection are repaired during scheduled repairs.
Use of advanced technologies

POTENTIAL INCIDENT SIMULATION, CONTROL AND EVALUATION SYSTEM (PISCES II) IN THE MARINE TERMINAL OFFSHORE AREA

PISCES II is designed to prevent, monitor and simulate emergency situations (ES) in the Marine Terminal offshore area related to oil contamination and to assist in management decisions development by the emergency response management group and Emergency Situations Commission during the response operations.

In case of ES the system allows automatically tracking on electronic navigation maps the oil spill trajectory on the water surface and the deployed manpower and resources activities. The system allows to maintain a database of the facility manpower and resources, local weather conditions and risk zones and simulate events of the scenarios and exercises.

The system allows, using simulation models developed based on the RAS State Oceanography Institute studies, to simulate the oil spill trajectory.

PISCES II interfaced with the hydro-meteorological monitoring system, mooring system and automatic identification system (AIS) combines all the elements into an integrated offshore operations safety system.
Environmental protection

INDUSTRIAL ENVIRONMENTAL CONTROL (IEC)

All types of environment components quality control, control over potential pollution and anthropogenic and industrial impact on the ecosystem are exercised at CPC facilities. The industrial environmental control (IEC) activities are coordinated with local environmental authorities.

To manage this process the company developed a database to collect, communicate and store CPC IEC measurement data. The database allows to make fact-based decisions on CPC pipeline facilities environmental compliance per environmental legislation requirements and on consolidation of the industrial environmental control findings data, classification thereof and prompt submission as requested by regulatory authorities.
Environmental protection

In Russia the crude pipeline route crosses Astrakhan region, Republic of Kalmykiya, Stavropol Krai, Krasnodar Krai, i.e., the areas with different terrains, climate and environmental conditions, hydrological regime. For each area individual approaches are developed and implemented to achieve environmental goals. In the seismic mountain area around the Marine Terminal near Novorossiysk the areas of concern are regularly inspected, waterways are consolidated, washaways are filled with crushed stone. To catch and dispose of melt and rain waters drainage channels are installed, to prevent land slides protective barriers are arranged. Concrete slabs are installed at the soil road crossings.

Reno mattress reinforced bank at the pipeline Bakanka River crossing

Temporary stream reinforced with Reno mattresses
Environmental protection

In Astrakhan region and Kalmykiya the pipeline route area is vulnerable to wind erosion (soil drifting). To resolve this problem the soil over the pipeline is reinforced with clay loam preventing the finest soil erosion. All along the pipeline geo-environmental monitoring is conducted continuously identifying and analyzing the areas mostly vulnerable to geological hazards (land slide, gully erosion, temporary streams formation, washaways). Visual inspections are regularly performed all along the pipeline route to determine its impact on the environment components.
Environmental protection

CPC unique feature is numerous surface water body crossings constructed using horizontal directional drilling method that minimizes environmental impact, thus, has almost no impact on the natural state of environment in the pipeline route area and eliminates any hardware impact on the river flora and fauna, bottom deposits wash away and banks erosion. This method was used, for instance, to construct large navigable river crossings (Volga in Astrakhan region, Kuban in Krasnodar Krai).
Environmental protection

AVIFAUNA PROTECTION

To prevent the bird kill during the power lines operation CPC developed and implemented various effective measures:

- use of self-supporting insulated wires
- pin-type insulators replacement with suspended insulators
- installation of plastic cap shaped bird protective devices fully covering the insulator
- installation of protective covers isolating the live wire near the pile cap
Environmental protection

MARINE TERMINAL AIR POLLUTANT EMISSIONS TEND

Main source of air pollution at CPC pipeline system facilities is the turbine generators natural gas burning emissions. To reduce environmental impact on Novorossiysk in August 2012 the Marine Terminal fully switched to external power supply. Thus, the generator turbines were put on standby. Therefore, in 2012 gross emissions from the Marine Terminal sources already reduced by 42.3% vs. 2011, in 2013 the reduction already was 68.4% which is a significant factor and a positive indication of Company environment protection efforts essentially eliminating the impact of JSC CPC-R tank farm facilities emissions on the industrial site surrounding areas air.
Environmental protection

COMPREHENSIVE JOINT TRAINING EXERCISES (CJTE)

The consortium annually holds around 10 large-scale exercises with the involvement of contractors and the Emergency Situations Ministry regional offices’ resources:

- Oil spill response drills at CPC facilities
- Fire tactical exercises at CPC facilities
- Training exercises on emergency response, oil spill response and fire fighting
- Personnel evacuation drills in case of fire and other emergencies from office buildings

Based on specifically developed schedules monthly training exercises are given to the personnel where aspects of different emergency situations response are trained. Besides hardware, special focus at the training is given to skills improvement of CPC personnel at all levels and of contractors’ employees.
Environmental protection

COMPREHENSIVE JOINT TRAINING EXERCISES (CJTE)

As CJTE are held on a regular basis they allow assessing readiness of CPC pipeline operations departments, maintenance personnel, the consortium security department and operating and dispatching personnel to emergency situations and improve the coordination level between companies and departments involved in the emergency response activities.

Besides JSC CPC-R the exercises participants include regional offices of the Emergency Situations Ministry, Ministry of Internal Affairs, Center for Emergency, Rescue and Ecological Operations, contractors, ambulance crews and certified environmental analytical laboratories from FSI State Center of Agrochemical Department Stavropolsky, FSI State Center of Agrochemical Department Astrakhansky, FSBEI of Higher Education Kuban State University NUNIMBTs, OJSC REAL Orgenergogaz.
Environmental protection

The following aspects and actions are trained during exercises and drills:

- Alert and mobilization of JSC CPC-R, Chief Directorate of the MES of Russia task forces engaged for emergency response;
- Response forces moving to the emergency scene and hardware deployment;
- The exercise zone cordonning off;
- Traffic control arrangement in the CJTE zone;
- Hazardous operations site cordonning off and training of access to hazardous areas per JSC CPC-R instructions;
- Oil spills containment;
- Fire simulation and real test fire extinguishing in the CJTE zone;
- Simulation of the first aid to simulated injured persons from security and responders by the ambulance crews;
- Tanks deployment for oil spill recovery;
- Booms installation for oil spills containment and check of skimmers designed for oil spills cleanup;
- Deployment and use of oil spill recovery vacuum trucks;
- Simulation of JSC CPC-R pipeline shutdown for emergency response, repair and recovery works;
- Simulation of oil contaminated soil and sorbents collection and disposal.
Environmental protection

PRODUCTION AND CONSUMPTION WASTE MANAGEMENT

Company has the document REGULATION ON WASTES MANAGEMENT ENVIRONMENTAL CONTROL approved by Federal Service for Supervision of Nature Resources (Rosprirodnadzor) in effect.

Under this document company shall not be engaged in treatment and disposal of waste of hazard classes I to IV. There are no waste disposal facilities available in the company.

Instrumentation control of oil content in the oily waste is carried out by a specialist contractor arranging the treatment under the signed contracts. The current company system of interim waste accumulation using metal containers or tanks installed in designated hard-surfaced areas eliminates the risk of soil and ground waters contamination with hazardous waste.
Environmental protection

WASTE MANAGEMENT

Interim waste accumulation is arranged based on separate (selective) storage by waste types, accumulated waste volumes are controlled and all wastes are timely transferred for treatment or disposal to specialist companies eliminating the risk of environment contamination inside and outside of the operating facilities area.
Environmental protection

WASTEWATER TREATMENT TECHNOLOGY

JSC CPC-R industrial facilities have two wastewater treatment systems: biological treatment plants for domestic wastewaters and industrial rainwater treatment plants followed by secondary treatment in oily waste treatment units.

At all facilities treatment plants closed cycle is arranged with no wastewater disposal into water bodies. After all treatment stages are completed wastewaters are accumulated in the in-house waterproof evaporation ponds. Waste generated in process of treatment plants operation are transferred for treatment under the developed wastes generation and disposal limits standard.
Air pollutant specific emissions, tons / thous. tons of crude oil

<table>
<thead>
<tr>
<th>Year</th>
<th>CPC-CR</th>
<th>CPC-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>0.138</td>
<td>0.042</td>
</tr>
<tr>
<td>2013</td>
<td>0.109</td>
<td>0.043</td>
</tr>
<tr>
<td>2014</td>
<td>0.101</td>
<td>0.043</td>
</tr>
<tr>
<td>2015</td>
<td>0.095</td>
<td>0.034</td>
</tr>
<tr>
<td>2016</td>
<td>0.076</td>
<td>0.037</td>
</tr>
<tr>
<td>2017</td>
<td>0.078</td>
<td>0.040</td>
</tr>
<tr>
<td>2018</td>
<td>0.068</td>
<td>0.039</td>
</tr>
</tbody>
</table>

Oil throughput volume, mln. t.

<table>
<thead>
<tr>
<th>Year</th>
<th>CPC-CR</th>
<th>CPC-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>33.29</td>
<td>30.66</td>
</tr>
<tr>
<td>2013</td>
<td>35.51</td>
<td>32.80</td>
</tr>
<tr>
<td>2014</td>
<td>40.27</td>
<td>38.48</td>
</tr>
<tr>
<td>2015</td>
<td>42.80</td>
<td>40.85</td>
</tr>
<tr>
<td>2016</td>
<td>44.32</td>
<td>44.30</td>
</tr>
<tr>
<td>2017</td>
<td>55.23</td>
<td>54.11</td>
</tr>
<tr>
<td>2018</td>
<td>61.08</td>
<td>61.10</td>
</tr>
</tbody>
</table>
Specific greenhouse gas (CO2) emissions, thous. tons / mln tons of crude oil
Specific water consumption, mc / thous. tons of crude oil

Oil throughput volume, mln. t.
Specific waste generation, tons / thous. tons of crude oil
Specific environmental payments, thous. rubles / mln. tons of crude oil

Oil throughput volume, mln. t.

- CPC
- CPC-R
- CPC-K

<table>
<thead>
<tr>
<th>Year</th>
<th>CPC</th>
<th>CPC-R</th>
<th>CPC-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>33,29</td>
<td>30,66</td>
<td>35,51</td>
</tr>
<tr>
<td>2013</td>
<td>35,35</td>
<td>32,80</td>
<td>32,48</td>
</tr>
<tr>
<td>2014</td>
<td>32,30</td>
<td>35,45</td>
<td>42,80</td>
</tr>
<tr>
<td>2015</td>
<td>40,27</td>
<td>42,70</td>
<td>42,02</td>
</tr>
<tr>
<td>2016</td>
<td>44,32</td>
<td>44,30</td>
<td>40,82</td>
</tr>
<tr>
<td>2017</td>
<td>55,23</td>
<td>55,11</td>
<td>49,63</td>
</tr>
<tr>
<td>2018</td>
<td>61,08</td>
<td>61,10</td>
<td>54,24</td>
</tr>
</tbody>
</table>

Oil throughput volume, mln. t.

- CPC
- CPC-R
- CPC-K

<table>
<thead>
<tr>
<th>Year</th>
<th>CPC</th>
<th>CPC-R</th>
<th>CPC-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>39,20</td>
<td>28,299</td>
<td>12,851</td>
</tr>
<tr>
<td>2014</td>
<td>32,18</td>
<td>22,887</td>
<td>17,349</td>
</tr>
<tr>
<td>2015</td>
<td>35,57</td>
<td>18,350</td>
<td>17,250</td>
</tr>
<tr>
<td>2016</td>
<td>37,79</td>
<td>17,349</td>
<td>17,250</td>
</tr>
<tr>
<td>2017</td>
<td>36,98</td>
<td>17,250</td>
<td>17,250</td>
</tr>
<tr>
<td>2018</td>
<td>35,82</td>
<td>17,250</td>
<td>17,250</td>
</tr>
</tbody>
</table>
Energy Conservation and Energy Efficiency Program

Main objectives of CPC Energy Conservation and Energy Efficiency Program in 2018:

1. Reduce specific electric power consumption used for crude oil transportation and transshipment (K kWh per km).
2. Reduce energy consumption (boiler and furnace fuel, electric power) used for own and process needs during crude oil transportation via trunk pipelines.

Main objectives of Energy Conservation Program:

1. Raise the energy efficiency of pumping modes and process parameters of pipeline operation.
2. Increase the pipeline throughput by using DRA.
3. Use energy efficient equipment and technologies;
4. Optimize the use of boiler and furnace fuel, electric power for CPC own needs.
Energy Conservation Program

Potential energy savings of CPC Energy Efficiency Program will be as follows in 2018-2023:

- Electric power savings – 3,029,87 KWh
- Boiler and furnace fuel savings – 27,78 K m3 (natural gas).

- Technical actions to reduce electric power consumption
- Technical actions to reduce the consumption of boiler and furnace fuel
Energy Conservation Program

Economic efficiency of energy conservation measures:

- Installation of LED lamps with tracking sensors indoors and outdoors
- Installation of energy saving film covers on windows in administrative buildings
- Use of heat generated by the water cooling system for air heating in the supply ventilation system of the ML pump house
- Installation of solar collectors in the hot water supply systems in buildings that have electric heaters now
- Heat insulation of non-insulated segments of the heat supply network
- Weather-dependent regulation of heat supply from the boiler house

70.8%
The Energy Management System (EMS) provides a framework and basis to evaluate the current status of energy conservation activities, identify new opportunities for improvement and ensure continuous improvement.

The EMS is based on the “plan-do-check-act” approach, which is actually a dynamic and circular model, where the completion of one stage becomes the beginning of the next one. Such structure helps to reassess and optimize energy use on a continuous basis.

To implement the Energy Management System (EMS) as per ISO 50001:2011, CPC has started internal and certification EMS audits. In 2016-2018, CPC completed primary energy surveys of 14 CPC facilities.
Risks insurance

Notwithstanding all environment, health and industrial safety measures being implemented CPC insure all risks voluntarily since the company was founded.

At the moment the Civil Liability, Product and Pollution Liability Insurance Policy is signed with the insurance company SOGAZ that the consortium has been working with since September 2009.

That policy in addition to the business processes maintains insurance for potential environmental damage, i.e., contamination of air or any waters, soil or any other material assets and personnel injury or death.
CPC Biodiversity Conservation Campaign for 2017-2018

Every year CPC implements the environmental awareness program "Let's preserve the nature of our native land" in Astrakhan Oblast with the objective to preserve the sturgeon population.

Goals & objectives:

- increase the population of endangered species of wildlife sturgeon;
- raise environmental awareness of a younger generation, foster environmental friendliness in children and teenagers;
- draw the attention of schoolchildren and public to the environmental problem of preserving the population of sturgeon;
- give the chance to schoolchildren to express their attitude to environmental issues via creative thinking and information visualization;
- focus the attention of schoolchildren on social importance of environmental activities as part of ongoing competitions.

FYI:

More than 95% of beluga, 80% of Russian sturgeon and 60% of stellate sturgeon in the Caspian Sea are produced by sturgeon hatcheries of the Caspian countries, of which over 75% were produced by sturgeon hatcheries of the USSR (and Russia).

Artificial reproduction today is the only way to save the population of sturgeon inhabiting the reservoirs of the Northern Hemisphere for several dozen million years.

Since 1998, sturgeon is under protection as per the Convention on International Trade in Endangered Species of Wild Flora and Fauna (CITES).
CPC Biodiversity Conservation Campaign for 2017-2018

Main actions:

- Accommodation of pupils of social institutions (10-13 y.o.) in the Multi-Functional Center named after A.S. Pushkin (the village of Yaksatovo, Astrakhan Oblast) during the spring school break. Targeted session “Save the unique” - lessons, lectures, role-playing games and practical exercises on biologic-ecological, ichthyological and fish-breeding subjects organized by young scientists from CaspNIRKh. Children visited the scientific and experimental base “BIOS” (the village of Iskryanskoye, Astrakhan Oblast)

- Creative contest among children of social institutions in the nomination “Sturgeon is a unique creation of nature. Study, protect and increase the population!”

- Release of young sturgeon – fries put in slots and transported for release to the Caspian Sea estuary.
CPC Biodiversity Conservation Campaign for 2017-2018

In Stavropol Krai, CPC has implemented the environmental and educational project "Let’s preserve the nature of our native land" targeted to preserve the population of red and axis deer in this region.

Goals & objectives:

- raise environmental awareness of a younger generation;
- restore natural biodiversity of Stavropol Krai, maintain the stability of natural ecosystems;
- foster environmental friendliness in children and teenagers;
- adapt red deer and axis deer to nature reserves of Stavropol Krai;
- raise the environmental culture of Stavropol Krai population;
- attract students' attention to the conservation of rare and endangered species of flora and fauna of Stavropol Krai through environmental lessons and creative contests.
12 species of red deer were released to the Buguntinsky Nature Reserve in Predgorny district. Red deer were settled in nature reserves. They were released from the temporary enclosure to the natural habitat. The population of red deer in Russia amounts to 200 thousand species. In Stavropol Krai (eastern area) their population does not exceed 20. This are animals freely living outside nature reserves.

In the state nature reserve "Lesnaya Dacha" in Ipatovsky urban district, 12 red deer were released into the wild. The nature reserve "Lesnaya Dacha" is one of the territories in the region, where these capricious and graceful animals will now live.

11 species of axis deer were released into the nature reserve “Russky Les”.

CPC Biodiversity Conservation Campaign for 2017-2018
Company biodiversity conservation programs in the operation regions

CPC in cooperation with the biosphere reserve Black Land in the Chernozemelsky district of Kalmykiya contributes to the international program Future for the Saiga.

Under this program the company participates in watering points arrangement, 3 artesian wells were drilled for this purpose.

CPC provided off-road vehicles for the reserve area security.

For the Saiga population size study the company delivers to the reserve binoculars, camera traps, telescopes and laptops allowing to conduct research, to create videos for the local community’s environmental awareness, for the younger generation education and public involvement in the Saiga conservation problem.
Established practice of third parties’ appeals management

Since 2009 CPC has the Procedure for Health, Safety and Environment (HSE) Communications with CPC Third-Party Stakeholders in place.

The latest revision of the document was issued in May 2017.

This procedure requirements are applicable to all JSC CPC-R functional departments.
Established practice of the appeals management

Interfaces with the third party stakeholders are aimed at forming a favorable public opinion about JSC Caspian Pipeline Consortium-R activities in the field of health, safety and environment, eliminating or minimizing significant environmental aspects and risks for personnel and other stakeholders that might be vulnerable to the risk of injury related to the activities thereof, applying the relevant liabilities to partners and achieving economic efficiency.

The procedure objective is to ensure efficient interfacing with third party stakeholders on JSC CPC-R HSE aspects related issues.

The procedure establishes:

- The process of third party stakeholders’ communications receipt by JSC CPC-R, documentation thereof, responses to the communications as appropriate, other contacts with third party stakeholders,

- Methods and procedure to inform the third party stakeholders about HSE management system and JSC CPC-R HSE performance including external information about its significant environmental aspects and risks.
Public awareness

Company quarterly informs the general public about the pipeline crossing populated areas all along the pipeline route as required by industrial safety regulations.